General parametric representation of real 2-D stable polynomials

نویسنده

  • Anton Kummert
چکیده

The theory of multidimensional systems gained enormous importance in the last years. Similar to the one-dimensional case, stability of such systems plays a crucial role. In this context so called scattering Hurwitz polynomials (in the continuous case) and scattering Schur polynomials (in the discrete) case are in the focus of interest. In the present paper a parametric representation for real two-variable scattering Schur polynomials is given. The following features of this model makes it best suited for the computer based design of 2-D systems, namely no dependencies between the real valued parameters, coverage of the whole class of 2-D scattering Schur polynomials, and the coefficients of the polynomials are rational functions of the parameters. The synthesis of two-dimensional (2-D) lossless networks and Householder matrices form the basis of our considerations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of a surface pencil with a common special surface curve

In this study, we introduce a new type of surface curves called $D$-type curve. This curve is defined by the property that the unit Darboux vector $vec{W}_{0} $ of a surface curve $vec{r}(s)$ and unit surface normal $vec{n} $ along the curve $vec{r}(s)$ satisfy the condition $leftlangle vec{n} ,vec{W}_{0} rightrangle =text{constant}$. We point out that a $D$-type curve is a geodesic curve or an...

متن کامل

Generalization of general helices and slant helices

In this work, we use the formal definition of $k$-slant helix cite{ali2} to obtain the intrinsic equations as well as the position vector for emph{slant-slant helices} which a generalization of emph{general helices} and emph{slant helices}. Also, we present some characterizations theorems for $k$-slant helices and derived, in general form, the intrinsic equations for such curves. Thereafter, fr...

متن کامل

On the Dynamics of the Family axd(x − 1) + x

In this paper we consider the dynamics of the real polynomials of degree d + 1 with a fixed point of multiplicity d ≥ 2. Such polynomials are conjugate to fa,d(x) = axd(x−1)+x, a ∈ R{0}, d ∈ N. Our aim is to study the dynamics fa,d in some special cases.

متن کامل

2 7 N ov 2 00 6 A unified approach to polynomial sequences with only real zeros ∗

We give new sufficient conditions for a sequence of polynomials to have only real zeros based on the method of interlacing zeros. As applications we derive several well-known facts, including the reality of zeros of orthogonal polynomials, matching polynomials, Narayana polynomials and Eulerian polynomials. We also settle certain conjectures of Stahl on genus polynomials by proving them for cer...

متن کامل

Ju l 2 00 6 A unified approach to polynomial sequences with only real zeros ∗

We give new sufficient conditions for a sequence of polynomials to have only real zeros based on the method of interlacing zeros. As applications we derive several well-known facts, including the reality of zeros of orthogonal polynomials, matching polynomials, Narayana polynomials and Eulerian polynomials. We also settle certain conjectures of Stahl on genus polynomials by proving them for cer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000